Многогранники, фигуры вращения, площади их поверхностей и объемы. Черчение Изображения многогранников и тел вращения


Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации:
Многогранники и тела вращенияПонарьина Евгения ВалентиновнаМБОУ СОШ №432016 годг.Воронеж МногогранникиТело, которое ограничено плоскими многоугольниками, называется многогранником. Многоугольники, образующие поверхность многогранника, называются гранями. Стороны этих многоугольников - рёбра многогранников. Вершины многоугольников - вершины многогранников. Многогранники МногогранникиПризмаПараллелепипедПирамида Элементы многогранниковГрани:АBСD, АА1В1В, АА1D1D,СС1В1В, СС1D1D, А1В1С1D1Ребра:АB, ВС, СD, DA, АА1, ВВ1, СС1 , DD1, А1В1 , В1С1, С1D1 , D1A1 Вершины:А, B, С, D, А1, В1, С1, D1 ПризмаОпр: Призмой называется многогранник, состоящий из двух равных многоугольников, расположенных в параллельных плоскостях и n параллелограммов.Многоугольники – основания призмыПараллелограммы – грани призмыПараллельные отрезки, соединяющие вершины многоугольников – боковые ребра призмы ПризмаПрямая призмаНаклонная призмаПравильная призмаОпр: Призма называется прямой, если ее боковые ребра перпендикулярны основаниямОпр: Призма называется наклонной, если ее боковые ребра неперпендикулярны основаниям и наклонены к ним под некоторым углом.Опр: Призма называется правильной, если она прямая и в основании у нее лежит правильный многоугольник ПараллелепипедОпр: Параллелепипедом называется призма, в основании которой лежит параллелограмм ПараллелепипедПрямойпараллелепипедПрямоугольный параллелепипедКубОпр: Параллелепипед называется прямым, если его ребра перпендикулярны основаниям.Опр: Прямоугольным параллелепипедом называется прямой параллелепипед, в основании которого – прямоугольник.Опр: Кубом называется прямоугольный параллелепипед, все ребра которого равны. ПирамидаОпр: n- угольной пирамидой называется многогранник, одна грань которого произвольный n-угольник, а остальные грани – треугольники, имеющие общую вершину.Многоугольник А1А2…Аn – называется основанием.Точка S – вершина пирамиды.Отрезки SA1, SA2 … SAn – боковые ребра пирамиды.ΔA1SA2 … ΔAn-1SAn – боковые грани пирамиды. Правильная пирамидаОпр: Пирамида называется правильной, если ее основание правильный многоугольник, а отрезок, соединяющий вершину с центром основания является ее высотой. (SO – высота)Опр: Высотой пирамиды называется отрезок перпендикуляра, проведенного из вершины пирамиды к плоскости основания, а так же длина этого отрезка.Опр: Центром правильного многоугольника называется центр вписанной в нее или описанной около нее окружности.Опр: Высота боковой грани правильной пирамиды, проведенная из ее вершины называется апофемой этой пирамиды.h - апофема ЗаданиеНекоторые из фигур на картинке являются многогранниками, а некоторые - нет. Под какими номерами изображены многогранники? ЗаданиеНекоторые из многогранников на рисунке являются пирамидами, а некоторые - нет. Под какими номерами изображены пирамиды? Тела вращенияТело вращения- это фигура, полученная вращением плоского многоугольника вокруг оси. Тела вращенияЦилиндрКонусШар, сфера ЦилиндрОпр: Прямым круговым цилиндром называется фигура, образованная двумя равными кругами, плоскости которых перпендикулярны прямой, проходящей через их центры, а также всеми отрезками, параллельными этой прямой, с концами на окружностях данных кругов. Элементы цилиндраОпр: Два круга, образующие цилиндр называются основаниями. Опр: Радиус основания цилиндра называется радиусом этого цилиндра.Опр: Прямая, проходящая через центры оснований цилиндра, называется его осью.Опр: Отрезок, соединяющий центры оснований, а также длина этого отрезка, называются высотой цилиндра.Опр: Отрезок, параллельный оси цилиндра, с концами на окружностях его оснований называется образующей данного цилиндра. Сечения цилиндра КонусОпр: Рассмотрим окружность L с центром O и отрезок OP, перпендикулярный к плоскости этой окружности. Каждую точку окружности соединим отрезком с точкой P.Поверхность, образованная этими отрезками, называется конической поверхностью, а сами отрезки – образующими этой поверхности.Тело, ограниченное конической поверхностью и кругом с границей L, называется конусом.Конус получен вращением прямоугольного треугольника АВС вокруг катета АВ КонусОпр: Коническая поверхность называется боковой поверхностью, а круг – основанием конуса. Отрезок OP называется высотой, прямая OP – ось конуса. Точка Р называется вершиной конуса.Образующие конической поверхности называются также образующими конуса, радиус окружности R называется радиусом конуса. Сечения конусаСечение конуса плоскостью α, перпендикулярной к его оси Осевое сечение конуса – равнобедренный треугольник СфераОпр: Сферой называется множество точек пространства, равноудаленных от заданной точки. Эта точка называется центром сферы. Опр: Отрезок, соединяющий любую точку сферы и ее центр, а также длина этого отрезка называются радиусом сферы.Шаром называется фигура, состоящая из сферы и множества всех ее внутренних точек.Сфера называется границей или поверхностью шара, а центр сферы – центром шара. Сфера Точки, расстояние от которых до центра сферы меньше ее радиуса, называются внутренними точками сферы.Точки, расстояние от которых до центра сферы больше ее радиуса, называются внешними точками сферы. СфераОтрезок, соединяющий две точки сферы, называется хордой сферы (шара).Любая хорда, проходящая через центр сферы, называется диаметром сферы (шара).

«Многогранники в геометрии» - Первый вел от фигур высшего порядка к фигурам низшего. Поверхность многогранника состоит из конечного числа многоугольников (граней). У прямоугольного параллелепипеда все грани прямоугольники. В ХI книге “Начал” изложены среди других и теоремы следующего содержания. Параллелепипеды с одинаковыми высотами и равновеликими основаниями равновелики.

«Построение многогранников» - У додекаэдра: 12 граней, 20 вершин и 30 ребер. Платон родился в Афинах. Существует пять типов правильных многогранников. Построение додекаэдра, описанного около куба. Построение с помощью куба. Элементы симметрии правильных многогранников. Построение икосаэдра, вписанного в куб. Построение правильного тетраэдра.

«Тела вращения» - Тела вращения. Вращением какого многоугольника и около какой оси можно получить данное геометрическое тело? Вычислите объем геометрического тела, полученного при вращении равнобедренной трапеции со сторонами основания 6 см, 8 см и высотой 4 см, около меньшего основания? Какое геометрическое тело получится при вращении данного треугольника около указанной оси?

«Полуправильные многогранники» - Тетраэдр. Четвертая группа Архимедовых тел: Вы дали неверный ответ. Усеченный октаэдр. Усеченный тетраэдр. Правильные. Вспомним. Обучающая программа. Пятая группа Архимедовых тел состоит из одного многогранника: Ромбоикосододэкаэдр. Управляющие кнопки. Полуправильные. Курносый куб. Многогранники. Псевдоромбокубооктаэдр.

«Правильные многогранники» - Мы делаем четкое различие между понятиями «автоморфизм» и «симметрия». Борьба со скрытыми симметриями - путь претворения в жизнь парадигмы Кокстера. Хaролд Скотт МакДoналд («Доналд») Кокстер (1907-2003). Малый звездчатый додекаэдр. Все автоморфизмы становятся скрытыми симметриями геометрической модели БТГ.

«Правильные многогранники» - Каждая вершина куба является вершиной трёх квадратов. Сумма плоских углов додекаэдра при каждой вершине равна 324?. 9 Каждая вершина икосаэдра является вершиной пяти треугольников. Икосаэдро-додекаэдровая структура Земли. Сумма плоских углов куба при каждой вершине равна 270?. Правильные многогранники и природа.

Студент должен:

знать:

    понятие многогранника, его поверхности, понятие правильного многогранника;

    определение призмы, параллелепипеда; виды призм; определение пирамиды, правильной пирамиды;

    понятие тела вращения и поверхности вращения;

    определение цилиндра, конуса, шара, сферы;

уметь:

    изображать и вычислять основные элементы прямых призм, параллелепипедов и пирамид;

    строить простейшие сечения многогранников, указанных выше.

Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.

Призма. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.

Пирамида. Правильная пирамида. Усеченная пирамида . Тетраэдр.

Симметрии в кубе, в параллелепипеде, в призме и пирамиде.

Сечения куба, призмы и пирамиды.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Цилиндр и конус. Усеченный конус . Основание, высота, боковая поверхность, образующая, развертка.Осевые сечения и сечения, параллельные основанию.

Шар и сфера, их сечения. Касательная плоскость к сфере.

Тема 9. «Начала математического анализа»

Студент должен:

знать:

    определение числовой последовательности;

    понятие производной, ее геометрический и физический смысл;

    правила и формулы дифференцирования функций, перечисленных в программе дисциплины;

    уравнение касательной к графику функции в указанной точке, понятие углового коэффициента прямой;

    достаточные признаки возрастания и убывания функции, существования экстремумов;

    определение второй производной, ее физический смысл;

    общую схему исследования функций и построения графиков с помощью производной;

    правило нахождения наибольшего и наименьшего значения функции на промежутке;

    определение первообразной;

    таблицу и правила вычисления первообразных;

    понятие определенного интеграла, его геометрический смысл;

    понятие криволинейной трапеции, способ вычисления площади криволинейной трапеции с помощью первообразной и определенного интеграла;

уметь:

    дифференцировать функции, используя таблицу и правила вычисления производных;

    вычислять значение производной функции в указанной точке;

    находить угловой коэффициент касательной, составлять уравнение касательной к графику функции в указанной точке;

    применять производную для нахождения промежутков монотонности и экстремумов функции;

    находить производную второго порядка, применять вторую производную для исследования функции;

    находить наибольшее и наименьшее значение функции на промежутке;

    решать несложные прикладные задачи на нахождение наибольших и наименьших значений реальных величин;

    вычислять первообразные элементарных функций с помощью таблиц и правил;

    вычислять первообразную, удовлетворяющую заданным начальным условиям;

    вычислять определенный интеграл с помощью формулы Ньютона-Лейбница;

    находить площади криволинейных трапеций.

Последовательности. Способы задания и свойства числовых последовательностей. Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Суммирование последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма.

Понятие о непрерывности функции.

Производная. Понятие о производной функции, её геометрический и физический смысл. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции функции .

Примеры использования производной для нахождения наилучшего решения в прикладных задачах. Вторая производная, ее геометрический и физический смысл. Применение производной к исследованию функций и построению графиков. Нахождение скорости для процесса, заданного формулой и графиком.

Первообразная и интеграл. Применение определенного интеграла для нахождения площади криволинейной трапеции. Формула Ньютона-Лейбница. Примеры применения интеграла в физике и геометрии.

Разделы: Технология

Цели урока:

  • закрепить знания о геометрических телах, умения и навыки по построению чертежей многогранников;
  • развивать пространственные представления и пространственное мышление;
  • формировать графическую культуру.

Тип урока: комбинированный.

Оснащение урока: интерактивная доска MIMIO, мультимедийный проектор, компьютеры, проект mimo для интерактивной доски, мультимедийная презентация, программа «Компас-3D LT».

ХОД УРОКА

I. Организационный момент

1. Приветствие;

2. Проверка явки учащихся;

3. Проверка готовности к уроку;

4. Заполнение классного журнала (и электронного)

II. Повторение раннее изученного материала

На интерактивной доске открыт проект mimo

Лист 1. На уроках математики вы изучали геометрические тела. Несколько тел вы видите на экране. Давайте вспомним их названия. Учащиеся дают названия геометрическим телам, если есть затруднения – помогаю. (Рис. 1).

1 – четырехугольная призма
2 – усеченный конус
3 – треугольная призма
4 – цилиндр
5 – шестиугольная призма
6 – конус
7 – куб
8 – усеченная шестиугольная пирамида

Лист 4 . Задание 2. Даны геометрические тела и названия геометрических тел. Вызываем ученика к доске и вместе с ним перетаскиваем многогранники и тела вращения под названия, а затем перетаскиваем названия геометрических тел (рис. 2).

Делаем вывод, что все тела делятся на многогранники и тела вращения.

Включаем презентацию «Геометрические тела» (Приложение ). Презентация содержит 17 слайдов. Можно использовать презентацию на нескольких уроках, она содержит дополнительный материал (слайды 14-17). Со слайда 8 есть гиперссылка на Презентацию 2 (развертки куба). Презентация 2 содержит 1 слайд, на котором изображены 11 разверток куба (они являются ссылками на видеоролики). На уроке использована интерактивная доска MIMIO, а также учащиеся работают на компьютерах (выполнение практической работы).

Слайд 2. Все геометрические тела делятся на многогранники и тела вращения. Многогранники: призма и пирамида. Тела вращения: цилиндр, конус, шар, тор. Схему учащиеся перечерчивают в рабочую тетрадь.

III. Объяснение нового материала

Слайд 3. Рассмотрим пирамиду. Записываем определение пирамиды. Вершина пирамиды – общая вершина всех граней, обозначается буквой S. Высота пирамиды – перпендикуляр, опущенный из вершины пирамиды (Рис. 3).

Слайд 4. Правильная пирамида. Если основание пирамиды - правильный многоугольник, а высота опускается в центр основания, то - пирамида правильная.
В правильной пирамиде все боковые ребра равны, все боковые грани равные равнобедренные треугольники.
Высота треугольника боковой грани правильной пирамиды называется - апофема правильной пирамиды .

Слайд 5. Анимация построения правильной шестиугольной пирамиды с обозначением ее основных элементов (Рис. 4).

Слайд 6 . Записываем в тетрадь определение призмы. Призма – многогранник, у которого два основания (равные, параллельно расположенные многоугольники), а боковые грани параллелограммы. Призма может быть четырехугольной, пятиугольной, шестиугольной и т.д. Призма называется по фигуре, лежащей в основании. Анимация построения правильной шестиугольной призмы с обозначением ее основных элементов (Рис. 5).

Слайд 7. Правильная призма – это прямая призма, в основании которой лежит правильный многоугольник. Параллелепипед – правильная четырехугольная призма (Рис. 6).

Слайд 8. Куб – параллелепипед, все грани которого квадраты (Рис. 7).

(Дополнительный материал: на слайде есть гиперссылка на презентацию с развертками куба, всего 11 разных разверток).
Слайд 9. Записываем определение цилиндра.Тело вращения – цилиндр, образованное вращением прямоугольника вокруг оси, проходящей через одну из его сторон. Анимация получения цилиндра (Рис. 8).

Слайд 10. Конус – тело вращения, образованное вращением прямоугольного треугольника вокруг оси, проходящей через один из его катетов (Рис.9).

Слайд 11. Усеченный конус – тело вращения, образованное вращением прямоугольной трапеции вокруг оси, проходящей через ее высоту (Рис. 10).

Слайд 12. Шар – тело вращения, образованное вращением круга вокруг оси, проходящей через его диаметр (Рис. 11).

Слайд 13. Тор – тело вращения, образованное вращением круга вокруг оси, параллельной диаметру круга (Рис. 12).

Учащиеся записывают определения геометрических тел в тетрадь.

IV. Практическая работа«Построение чертежа правильной призмы»

Переключаемся на проект mimio

Лист 7 . Дана треугольная правильная призма. В основании лежит правильный треугольник. Высота призмы = 70 мм, а сторона основания = 40 мм. Рассматриваем призму (направление главного вида показано стрелкой), определяем плоские фигуры, который мы увидим на виде спереди, сверху и слева. Вытаскиваем изображения видов и расставляем на поле чертежа (Рис. 13).

Учащиеся самостоятельно выполняют чертеж правильной шестиугольной призмы в программе «Компас – 3D». Размеры призмы: высота – 60 мм, диаметр описанной окружности вокруг основания – 50 мм.
Построение чертежа с вида сверху (Рис. 14).

Затем строится вид спереди (Рис. 15).

Затем строится вид слева и наносятся размеры (Рис. 16).

Работы проверяются и сохраняются на компьютерах учащимися.

V. Дополнительный материал по теме

Слайд 14 . Правильная усеченная пирамида (Рис. 17).

Слайд 15. Пирамида, усеченная наклонной плоскостью (Рис. 18).

Слайд 16. Развертка правильной треугольной пирамиды (Рис. 19).

Слайд 17. Развертка параллелепипеда (Рис. 20).

Цилиндр называется описанным около призмы , если окружности оснований цилиндра описаны около оснований призмы, а боковые ребра призмы являются образующими цилиндра. Призма соответственно называется вписанной в цилиндр.

Теорема . Для того чтобы около призмы можно было описать цилиндр, необходимо и достаточно, чтобы призма была прямая и около ее основания можно было описать окружность.

Цилиндр называется вписанным в призму , если окружности его оснований вписаны в основания призмы, а боковая поверхность касается боковых граней призмы.

Теорема . Для того чтобы в призму можно было вписать цилиндр, необходимо и достаточно, чтобы призма была прямая и в ее основание можно было вписать окружность.

Конус называется описанным около пирамиды , если окружность основания конуса описана около основания пирамиды, а боковые ребра пирамиды являются образующими конуса. Пирамида соответственно называется вписанной в конус.

Теорема . Для того чтобы около пирамиды можно было описать конус, необходимо и достаточно, чтобы боковые ребра пирамиды были равны.

Конус называется вписанным в пирамиду , если окружность его основания вписана в основание пирамиды, а боковая поверхность касается боковых граней пирамиды. Пирамида соответственно называется описанной около конуса.

Теорема . Для того чтобы в пирамиду можно было вписать конус, необходимо и достаточно, чтобы в основание пирамиды можно было вписать окружность, а вершина пирамиды ортогонально проектировалась в центр этой окружности.

Пример 1. Шар вписан в прямую призму, основанием которой является прямоугольный треугольник с катетом a и противолежащим ему острым углом α . Найти объем призмы.

Решение. Сделаем рисунок (рис. 12.48). Шар вписан в прямую призму, значит, высота призмы равна диаметру шара, а в треугольник основания вписана окружность, радиус которой равен радиусу шара. Рассмотрим прямоугольный треугольник ABC , у которого катет BC = a , противолежащий ему ÐBAC = α . Найдем катет AC и гипотенузу AB :


Площадь треугольника ABC равна:

Вычислим радиус окружности, вписанной в треугольник:

Вычисляем объем призмы по формуле

Получаем ответ:

Пример 2 . Боковое ребро правильной четырехугольной пирамиды равно a. Двугранный угол, образованный смежными боковыми гранями, равен β . Найти радиус шара, описанного около этой пирамиды.

Решение. Сделаем рисунок (рис. 12.49): ABCD – квадрат, SO – высота пирамиды, ÐAEC = b – двугранный угол.

Рассмотрим диагональное сечение пирамиды – треугольник SBD (SB = SD ). Радиусом шара, описанного около данной пирамиды, будет радиус окружности, описанной около треугольника SBD . Найдем его по формуле


Из подобия треугольников (ÐSOB = ÐSEO = 90°, ÐBSO = ÐOSE ) следует пропорциональность сторон: SB /SO = BO /OE .

Из треугольника найдем Так как АО = ВО , то Следовательно,

Вычисляем радиус окружности:

Получаем ответ:

Пример 3. В усеченный конус вписан шар радиуса R . Образующая конуса наклонена к плоскости основания под углом a . Найти объем усеченного конуса.

Решение. Рассмотрим осевое сечение конуса (рис. 12.50).


Введем обозначения: R 1 – радиус нижнего основания конуса, R 2 – радиус верхнего основания. Высота данного усеченного конуса будет равна диаметру вписанного в него шара 2R . Рассмотрим прямоугольный треугольник ABC : ÐB = 90°, ÐA = a , BC = 2R . Найдем катет BA и гипотенузу AC : BA = BC × ctga , Так как в усеченный конус вписан шар, то образующая этого конуса равна сумме радиусов его оснований. Получим равенство:

Заметим, что

Решив систему найдем

Вычисляем объем усеченного конуса по формуле (12.8).

Получаем ответ:

Пример 4 . В шар радиуса R вписан конус, образующая которого составляет с плоскостью основания угол φ . Найти площадь полной поверхности конуса.

Решение. Для вычисления площади полной поверхности конуса необходимо знать радиус основания и образующую конуса. Рассмотрим осевое сечение данного конуса – равнобедренный треугольник SAB : SA = SB – образующие, SD – высота, DB – радиус основания конуса (рис. 12.51).


По условию задачи ÐSAD = φ , следовательно, Треугольник AOS – равнобедренный (AO = OS = R ), поэтому Внешний угол этого треугольника при вершине О равен: ÐAOD = ÐSAO + ÐASO = p – 2j .

Из треугольника AOD D = 90°, AO = R , ÐAOD = p – 2j ) выразим AD :

Из треугольника ASD D = 90°, AD = R sin 2j ) выразим SA :

Подставив найденные выражения в формулу для вычисления площади полной поверхности конуса, получим:

Таким образом,

Пример 5 . В прямой параллелепипед вписан цилиндр, объем которого в m раз меньше объема параллелепипеда. Найти двугранные углы при боковых ребрах параллелепипеда.

Решение. Двугранными углами при боковых ребрах данного параллелепипеда являются углы параллелограмма, лежащего в его основании. В параллелепипед вписан цилиндр, значит, в параллелограмм основания вписана окружность. Если в четырехугольник вписана окружность, то суммы длин противолежащих сторон четырехугольника равны. Таким образом, основанием параллелепипеда является ромб. Сделаем рисунок (рис. 12.52).


Обозначим искомый угол a . Из треугольника ABC C = 90°, ÐA = a ) найдем сторону ромба AB и его высоту BC :

Так как высоты цилиндра и параллелепипеда равны, то площадь основания цилиндра будет в m раз меньше площади основания параллелепипеда. Запишем равенство: и выразим из него далее

Двугранные углы при боковых ребрах параллелепипеда будут равны:

И

Задания

I уровень

1.1. В правильную четырехугольную пирамиду с объемом вписан конус. Найдите его объем.

1.2. В конус, образующая которого наклонена к плоскости основания под углом a , вписана пирамида. Основание пирамиды – прямоугольный треугольник с катетами 3 см и 4 см. Найдите объем пирамиды, если

1.3. Около цилиндра описана правильная четырехугольная призма, периметр основания которой равен 12 см, а площадь боковой поверхности равна 48 см 2 . Найдите площадь полной поверхности цилиндра.

1.4. В равносторонний цилиндр, диагональ осевого сечения которого равна вписана правильная шестиугольная призма. Вычислите площадь боковой поверхности призмы.

1.5. Усеченный конус описан около правильной треугольной усеченной пирамиды. Радиус верхнего основания в 2 раза меньше радиуса нижнего основания конуса, высота равна 4 см, а образующая – 5 см. Найдите площадь боковой поверхности усеченной пирамиды.

1.6. В куб вписан шар и около куба описан шар. Найдите отношение объемов этих шаров.

1.7. В сферу вписан цилиндр. Площадь основания цилиндра равна 16p см 2 , тангенс угла наклона диагонали его осевого сечения к плоскости основания равен 3. Найдите площадь сферы.

1.8. В конус, площадь боковой поверхности которого в 2 раза больше площади основания, вписан шар. Найдите радиус шара, если образующая конуса равна 8 см.

1.9. В цилиндрическую мензурку, диаметр которой 2,5 см, заполненную водой до некоторого уровня, опускают четыре равных металлических шарика диаметром 1 см. Определите, на сколько изменится уровень воды в мензурке.

1.10. Основания шарового слоя и цилиндра совпадают. Объем тела, заключенного между их боковыми поверхностями, равен 36p см 3 . Найдите высоту шарового слоя.

II уровень

2.1. Равносторонний треугольник, сторона которого равна а , вращается вокруг внешней оси, параллельной его высоте и удаленной от нее на Найдите площадь поверхности полученного тела вращения.

2.2. Усеченный конус вписан в четырехугольную усеченную пирамиду, основание которой – ромб со стороной а и углом a . Площадь боковой поверхности пирамиды равна S , боковые грани наклонены к основанию пирамиды под углом b . Найдите объем усеченного конуса.

2.3. В правильной треугольной призме боковое ребро равно стороне основания. Около призмы описан шар, а около шара описан конус. Образующая конуса равна l и составляет с плоскостью основания угол a . Найдите объем призмы.

2.4. В пирамиде, все боковые грани которой равнонаклонены к плоскости основания, через центр вписанного шара проведена плоскость, параллельная плоскости основания. Отношение площади сечения пирамиды этой плоскостью к площади основания равно k . Найдите угол между боковой гранью и основанием пирамиды.

2.5. В шар радиуса R вписаны два конуса с общим основанием. Вершины конусов совпадают с противоположными концами диаметра шара. Шаровой сегмент, вмещающий меньший конус, имеет в осевом сечении дугу a . Найдите расстояние между центрами шаров, вписанных в эти конусы.

2.6. Шар касается всех боковых ребер правильной четырехугольной призмы и ее оснований. Найдите отношение площади поверхности шара, лежащей вне призмы, к площади полной поверхности призмы.

2.7. В правильную четырехугольную пирамиду вписан равносторонний цилиндр так, что одна из его образующих расположена на диагонали основания пирамиды, а окружность основания касается двух смежных боковых граней пирамиды. Найдите радиус основания цилиндра, если боковое ребро пирамиды равно b , а угол его наклона к плоскости основания равен a .

2.8. Ребро тетраэдра равно 8 см. Цилиндрическая поверхность проходит через одно из его ребер и через все его вершины. Найдите радиус основания цилиндра.

2.9. Ребра треугольной пирамиды, выходящие из вершины S , попарно перпендикулярны и равны a , b и c . Найдите объем куба, вписанного в пирамиду так, что одна из его вершин совпадает с вершиной S пирамиды.

2.10. В усеченный конус вписан шар, объем которого составляет объема конуса. Найдите угол наклона образующей к плоскости нижнего основания конуса.

III уровень

3.1. Боковое ребро правильной треугольной пирамиды равно b и образует с плоскостью основания угол α . В пирамиду вписан равносторонний цилиндр так, что его нижнее основание лежит в плоскости основания пирамиды. Найдите высоту цилиндра.

3.2. Сфера с центром в вершине конуса касается его основания и делит поверхность конуса на две части, имеющие равные площади. Найдите угол при вершине осевого сечения конуса.

3.3. В куб, ребро которого равно a , вписан конус с углом между образующими в осевом сечении, равным α . Найдите длину образующей и радиус основания конуса, если его высота лежит на диагонали куба.

3.4. Шар касается трех граней куба, содержащих одну вершину, и проходит через вершину куба, противолежащую первой. Найдите радиус шара, если ребро куба равно a .

3.5. Цилиндр завершен сверху полушаром. Объем тела равен 45π . При каком радиусе полушара полная поверхность тела будет наименьшей?

3.6. В конус с радиусом основания R и высотой H вписан цилиндр. Найдите линейные размеры цилиндра, при которых его объем будет наибольшим.

3.7. Найдите наибольший объем правильной шестиугольной пирамиды вписанной в шар, радиус которого равен R .

3.8. В правильную четырехугольную пирамиду вписан цилиндр так, что окружность его верхнего основания касается всех боковых граней пирамиды, а нижнее основание лежит в плоскости основания пирамиды. Какую часть высоты пирамиды должна составлять высота цилиндра, чтобы объем цилиндра был наибольшим?