Тема урока: Уравнение касательной к графику функции. Урок "уравнение касательной к графику функции" Уравнение касательной к графику функции конспект

Тип урока: изучение нового материала.

Методы обучения: наглядный, частично поисковый.

Цель урока:

  1. Ввести понятие касательной к графику функции в точке, выяснить, в чём состоит геометрический смысл производной, вывести уравнение касательной и научить находить его для конкретных функций.
  2. Развитие логического мышления, исследовательских навыков, функционального мышления, математической речи.
  3. Выработка коммуникативных навыков в работе, способствовать развитию самостоятельной деятельности учащихся.

Оборудование: компьютер, мультимедийный проектор, раздаточный материал.

Скачать:


Предварительный просмотр:

Урок по теме "Касательная. Уравнение касательной"

Тип урока: изучение нового материала.

Методы обучения: наглядный, частично поисковый.

Цель урока:

  1. Ввести понятие касательной к графику функции в точке, выяснить, в чём состоит геометрический смысл производной, вывести уравнение касательной и научить находить его для конкретных функций.
  2. Развитие логического мышления, исследовательских навыков, функционального мышления, математической речи.
  3. Выработка коммуникативных навыков в работе, способствовать развитию самостоятельной деятельности учащихся.

Оборудование: компьютер, мультимедийный проектор, раздаточный материал.

План урока

I Организационный момент.
Проверка готовности учащихся к уроку. Сообщение темы и девиза урока.

II Актуализация материала.
(Активизировать внимание, показать недостаточность знаний о касательной, сформулировать цели и задачи урока.)

Давайте обсудим, что такое касательная к графику функции? Согласны ли вы с утверждением, что «Касательная – это прямая, имеющая с данной кривой одну общую точку»?
Идёт обсуждение. Высказывания детей (да и почему, нет и почему). В процессе обсуждения приходим к выводу, что данное утверждение не верно.

Примеры.
1) Прямая x = 1 имеет с параболой y = x2 одну общую точку M(1; 1), однако не является касательной к параболе. Прямая же y = 2x – 1, проходящая через ту же точку, является касательной к данной параболе.
2) Аналогично, прямая x = π не является касательной к графику
y = cos x , хотя имеет с ним единственную общую точку K(π; 1). С другой стороны, прямая y = - 1, проходящая через ту же точку, является касательной к графику, хотя имеет с ним бесконечно много общих точек вида; (π+2 πk; 1), где k – целое число, в каждой из которых она касается графика.


Рисунок 1


Рисунок 2

Постановка цели и задачи перед детьми на уроке: выяснить, что такое касательная к графику функции в точке, как составить уравнение касательной?
Что нам для этого понадобиться?
Вспомнить общий вид уравнения прямой, условия параллельности прямых, определение производной, правила дифференцирования.

III Подготовительная работа к изучению нового материала.
Опрос материала по карточкам: (задания выполняются на доске)
1 ученик: заполнить таблицу производных элементарных функций

2 ученик: вспомни правила дифференцирования

3 ученик: составьте уравнение прямой y = kx + 4 , проходящей через точку А(3; -2).
(y = -2x+4)

4 ученик: составьте уравнение прямей y = 3x + b , проходящей через точку С(4; 2).
(y = 3x – 2).

С остальными фронтальная работа.

  1. Сформулируйте определение производной.
  2. Какие из указанных прямых параллельны? у = 0,5х; у = - 0,5х; у = - 0,5х + 2. Почему?

Отгадай фамилию учёного:

Ключ к ответам

Кем был этот учёный, с чем связаны его работы, мы узнаем на следующем уроке.
Проверка ответов учащихся по карточкам.
IV Изучение нового материала.
Чтобы задать уравнение прямой на плоскости нам достаточно знать её угловой
коэффициент и координаты одной точки.

  • Начнём с углового коэффициента



Рисунок 3

Рассмотрим график функции y = f(x) дифференцируемой в точке А (x 0 , f(x 0 )) .
Выберем на нём точку
M (x 0 + Δх, f(x 0 + Δх)) и проведем секущую AM .
Вопрос: чему равен угловой коэффициент секущей? (∆f/∆x=tgβ)

Будем приближать по дуге точку M к точке A . В этом случае прямая AM будет поворачиваться вокруг точки A , приближаясь (для гладких линий) к некоторому предельному положению - прямой AT . Другими словами AT , обладающую таким свойством, называют касательной к графику функции y = f(x) в точке А(x 0 , f(x 0 )).

Угловой коэффициент секущей AM при AM → 0 стремится к угловому коэффициенту касательной AT Δf/Δx → f "(x 0 ) . Значение производной в точке х 0 примем за угловой коэффициент касательной. Говорят, что касательная есть предельное положение секущей при ∆х → 0 .

Существование производной функции в точке x 0 эквивалентно существованию (невертикальной) касательной в точке (x 0 , f(x 0 )) графика, при этом угловой коэффициент касательной равен f "(x 0 ) . В этом состоит геометрический смысл производной .

Определение касательной : Касательная к графику дифференцируемой в точке х 0 функции f - это прямая, проходящая через точку (x 0 , f(x 0 )) и имеющая угловой коэффициент f "(х 0 ) .
Проведем касательные к графику функции
y = f(x) в точках х 1 , х 2 , х 3 , и отметим углы, которые они образуют с осью абсцисс. (Это угол, отсчитываемый в положительном направлении от положительного направления оси до прямой.)



Рисунок 4

Мы видим, что угол α 1 острый, угол α 3 тупой, а угол α 2 равен нулю, так как прямая l параллельна оси Ох. Тангенс острого угла положителен, тупого - отрицателен. Поэтому f "(х 1 )>0, f "(х 2 ) = 0, f "(х 3 )

  • Выведем теперь уравнение касательной к графику функции f в точке А(x 0 , f(x 0 ) ).

Общий вид уравнения прямой y = kx + b .

  1. Найдём угловой коэффициент k = f "(х 0 ), получим y = f "(х0)∙x + b, f(x) = f "(х 0 )∙x + b
  2. Найдём b . b = f(x 0 ) - f "(х 0 )∙x 0 .
  3. Подставим полученные значения k и b в уравнение прямой: y = f "(х 0 )∙x + f(x 0 ) - f "(х 0 )∙x 0 или y = f(x 0 ) + f "(х 0 )(x - x 0 )
  • Обобщение материала лекции.



- сформулируйте алгоритм нахождения уравнения касательной в точке?

1. Значение функции в точке касания
2. Общую производную функции
3. Значение производной в точке касания
4. Подставить найденные значения в общее уравнение касательной.

V Закрепление изученного материала.

1. Устная работа:
1) В каких точках графика касательная к нему
а) горизонтальна;
б) образует с осью абсцисс острый угол;
в) образует с осью абсцисс тупой угол?
2) При каких значениях аргумента производная функции, заданной графиком
а) равна 0;
б) больше 0;
в) меньше 0?


Рисунок 5



Рисунок 6

3) На рисунке изображён график функции f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f "(x) в точке x 0 .


Рисунок 7

2. Письменная работа.
№ 253 (а, б), № 254 (а, б). (работа на местах, с комментарием)

3. Решение опорных задач.
Рассмотрим четыре типа задач. Дети читают условие задачи, предлагают алгоритм решения, один из учеников оформляет его на доске, остальные записывают в тетрадь.
1. Если задана точка касания
Составить уравнение касательной к графику функции
f(x) = x 3 – 3x – 1 в точке М с абсциссой –2.
Решение:

  1. Вычислим значение функции: f(-2) =(-2) 3 – 3(-2) – 1 = -3 ;
  2. найдём производную функции: f "(х) = 3х 2 – 3;
  3. вычислим значение производной: f "(-2) = - 9.;
  4. подставим эти значения в уравнение касательной: y = 9(x + 2) – 3 = 9x + 15.

Ответ: y = 9x + 15.

2. По ординате точки касания.
Составить уравнение касательной в точке графика
с ординатой y 0 = 1.
Решение:

Ответ: y = –x + 2 .

3. Заданного направления.
Написать уравнения касательной к графику
y = x 3 – 2x + 7 , параллельной прямой у = х .
Решение.
Искомая касательная параллельна прямой
y = x . Значит, они имеют один и тот же угловой коэффициент k = 1, y"(х) = 3х2 – 2. Абсцисса х 0 точек касания удовлетворяет уравнению 3х 2 – 2 = 1 , откуда х 0 = ±1.
Теперь можно написать уравнения касательных:
y = x + 5 и y = x + 9 .
Ответ: y = x + 5 , y = x + 9 .

4. Условия касания графика и прямой.
Задача. При каких
b прямая y = 0,5x + b является касательной к графику функции f(х) = ?
Решение.
Вспомним, что угловой коэффициент касательной – это значение производной в точке касания. Угловой коэффициент данной прямой равен k = 0,5. Отсюда получаем уравнение для определения абсциссы x точки касания:
f "(х) = = 0,5. Очевидно, его единственный корень –х = 1. Значение данной функции в этой точке у(1) = 1. Итак, координаты точки касания (1; 1). Теперь остается подобрать такое значение параметра b, при котором прямая проходит через эту точку, то есть координаты точки удовлетворяют уравнению прямой: 1 = 0,5 ·1 + b, откуда b = 0,5.

5. Самостоятельная работа обучающего характера.

Работа в парах.


Проверка: результаты решения заносятся в таблицу на доске (от каждой пары один ответ), обсуждение ответов.

6. Нахождение угла пересечения графика функции и прямой.
Углом пересечения графика функции
y = f(x) и прямой l называют угол, под которым в этой же точке прямую пересекает касательная к графику функции.
№ 259 (а, б), № 260 (а) – разобрать у доски.

7. Самостоятельная работа контролирующего характера. (работа дифференцированная, проверяет учитель к следующему уроку)
1 вариант.

2 вариант.

  1. В каких точках касательная к графику функции f(x) = 3х 2 - 12х + 7 параллельна оси х?
  2. Составьте уравнение касательной к графику функции f(x)= х 2 - 4 в точке с абсциссой х 0 = - 2. Выполните рисунок.
  3. Выясните, является ли прямая у = 12х – 10 касательной к графику функции у = 4х 3 .

3 вариант.

VI Подведение итогов урока.
1. Ответы на вопросы
- что называется касательной к графику функции в точке?
- в чём заключается геометрический смысл производной?
- сформулируйте алгоритм нахождения уравнения касательной в точке?
2. Вспомните цели и задачи урока, достигли ли мы данной цели?
3. В чём были трудности на уроке, какие моменты урока наиболее понравились?
4. Выставление отметок за урок.
VII Комментарий домашнего задания: п. 19 (1, 2), № 253 (в), № 255 (г), № 256 (г), № 257 (г), № 259 (г). Подготовить сообщение о Лейбнице.

Литература

1. Алгебра и начала анализа: учебник для 10 класса общеобразовательных учреждений. Составители:. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин. - М.: Просвещение, 2008.

2. Дидактические материалы по алгебре и началам анализа для 10 класса / Б.М.Ивлев, С.М.Саакян, С.И. Шварцбурд. - М.: Просвещение, 2008.
3. Мультимедийный диск фирмы «1С». 1С: Репетитор. Математика (ч. 1) + Варианты ЕГЭ. 2006.
4. Открытый банк заданий по математике/ http://mathege.ru/


Дата:__________________

Тема: Уравнение касательной к графику функции.

Тип урока: изучение нового материала.

Методы обучения: наглядный, частично поисковый.

Цель урока.

    Ввести понятие касательной к графику функции в точке, выяснить в чем состоит геометрический смысл производной, вывести уравнение касательной и научить находить его для конкретных функций.

    Развивать логическое мышление, математическую речь.

    Воспитывать волю и упорство для достижения конечных результатов.

Человек лишь там чего–то добивается, где он верит в свои силы”

Л. Фейербах

Ход урока.

I. Организационный момент

Проверка готовности учащихся к уроку. Сообщение темы урока и целей.

II. Актуализация знаний.

(Вспомнить с учащимися геометрическое определение касательной к графику функции. Привести примеры, показывающие, что данное утверждение не полно.)

Вспомним, что же такое касательная?

“Касательная – это прямая, имеющая с данной кривой одну общую точку”.

Обсуждение правильности данного определения. (После обсуждения, учащиеся приходят к выводу, что данное определение неверно.) Для наглядного доказательства их умозаключения приводим следующий пример.

Рассмотрим пример.

Пусть дана парабола и две прямые , имеющая с данной параболой одну общую точку М (1;1). Проводится обсуждение, почему первая прямая не является к данной параболе касательной, а вторая является.


На данном уроке, мы с вами должны выяснить, что же такое касательная к графику функции в точке, как составить уравнение касательной?

Рассмотреть основные задачи на составление уравнения касательной.

Для этого, вспомнить общий вид уравнения прямой, условия параллельности прямых, определение производной и правила дифференцирования.

III. Подготовительная работа к изучению нового материала.

    Сформулировать определение производной.

    Заполнить таблицу произвольных элементарных функций.

    Вспомнить правила дифференцирования.

    Какие из указанных прямых параллельны и почему? (Убедиться наглядно)

IV Изучение нового материала.

Чтобы задать уравнение прямой на плоскости нам достаточно знать угловой коэффициент и координаты одной точки.

Пусть дан график функции . На нем выбрана точка , в этой точке к графику функции проведена касательная (мы предполагаем, что она существует). Найти угловой коэффициент касательной.

Дадим аргументу приращение и рассмотрим на графике (Рис. 3) точку P с абсциссой . Угловой коэффициент секущей MP, т.е. тангенс угла между секущей и осью x, вычисляется по формуле .

Если мы теперь устремим к нулю, то точка Р начнет приближаться по кривой к точке М. Касательную мы охарактеризовали как предельное положение секущей при этом приближении. Значит, естественно считать, что угловой коэффициент касательной будет вычисляться по формуле .

Следовательно, .

Если к графику функции y = f (x) в точке х = а можно провести касательную, непараллельную оси у , то выражает угловой коэффициент касательной.

Или по другому. Производная в точке х = а равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке .

Это и есть геометрический смысл производной.

Причем, если:

Выясним общий вид уравнения касательной.

Пусть прямая задана уравнением . Мы знаем, что . Для вычисления m воспользуемся тем, что прямая проходит через точку . Подставим в уравнение. Получим , т.е. . Подставим найденные значения k и m в уравнение прямой:

– уравнение касательной к графику функции.

Рассмотрим примеры:

Составим уравнение касательной:

Решая эти примеры, мы воспользовались очень простым алгоритмом, который заключается в следующем:

Рассмотрим типичные задания и их решение.

1. Составить уравнение касательной к графику функции в точке .

Решение. Воспользуемся алгоритмом, учитывая, что в данном примере .

2)

3) ;

4) Подставим найденные числа ,, в формулу.

Ответ:

2. К графику функции провести касательную так, чтобы она была параллельна прямой .

Решение. Уточним формулировку задачи. Требование “провести касательную” обычно означает “составить уравнение касательной”. Воспользуемся алгоритмом составления касательной, учитывая, что в данном примере .

Искомая касательная должна быть параллельна прямой . Две прямые параллельны, тогда и только тогда, когда равны их угловые коэффициенты. Значит угловой коэффициент касательной должен быть равен угловому коэффициенту заданной прямой: .Но . Следовательно: ; .

Из уравнения ,т.е. , находим, что и . Значит, имеются две касательные, удовлетворяющие условию задачи: одна в точке с абсциссой 2, другая в точке с абсциссой -2.

Действуем по алгоритму.

4) Подставив значения ,, , получим , т.е. .

Подставив значения ,, , получим , т.е.

Ответ: , .

V. Решение задач.

1. Решение задач на готовых чертежах

VI. Подведение итогов.

1. Ответьте на вопросы:

    Что называется касательной к графику функции в точке?

    В чем заключается геометрический смысл производной?

    Сформулируйте алгоритм нахождения уравнения касательной?

2. В чем были трудности на уроке, какие моменты урока наиболее понравились?

3. Выставление оценок.

Урок изучения нового материала в 10 классе

«Уравнение касательной к графику функции»

УМК: Алгебра и начала математического анализа. 10-11 классы

(базовый уровень) 2011 год

Предмет: математика.

Класс: 10

Тип урока: изучение нового материала

Тема: Уравнение касательной к графику функции

Цель: вывести формулу уравнения касательной к графику функции в заданной точке, составить алгоритм нахождения уравнения касательной, научиться составлять уравнение касательной.

Задачи:

Обучающие:

    отработать и систематизировать навыки и умения по теме «Касательная, уравнение касательной к графику функции».

Развивающие:

    способствовать развитию внимания;

    способствовать развитию навыков устного счета;

    способствовать развитию логического мышления, математической интуиции;

    способствовать развитию и пониманию у учащихся меж предметных связей;

Воспитательные:

    развивать у учащихся коммуникативные компетенции (культуру общения, умение работать в группах, умение аргументировать свою точку зрения);

    создавать условия для осознания необходимости самостоятельных действий при решении проблем;

    осознавать большую практическую и историческую значимость производной.

Оборудование: компьютер, проектор, презентация, учебник, программа «Живая математика», чертежи графиков функций в программе «Живая математика».

Структура и план урока:

1.Мотивация (самоопределение) к учебной деятельности.

2.Актуализация знаний и фиксация затруднения в деятельности.

3.Постановка учебной задачи.

4.Открытие нового знания.

Задача 9 слайда презентации: «Составьте уравнение касательной к графику функции f(x) = x 2 +3x+1в точке с абсциссой х 0 =1» выводит к следующему этапу урока.

3.Постановка учебной задачи.

Цель: обсуждение затруднений. Почему возникли затруднения? Чего мы еще не знаем? (1-2 мин) Учащиеся формулируют цели и задачи урока.

4.Открытие нового знания.

Цель: построение проекта выхода из затруднения (5-7 мин)

В качестве дополнительного домашнего задания 2 «сильным» ученикам Шеину Ивану и Коневу Виталию было предложено разобраться с помощью учебника с выводом общей формулы уравнения касательной (учебник страница 174) и примером на составление уравнения касательной к графику функции 2 в точке х= 1 (учебник страница 166, пример 2).

Учащиеся записывают свои выводы на доске, остальные записывают в тетрадь. После вывода учащихся учителем демонстрируется чертеж 1, выполненный в программе «Живая математика» (график функции и касательная к нему в точке) и с уравнением касательной.

5.Первичное закрепление во внешней речи.

Цель: проговаривание нового знания, запись в виде опорного сигнала (5 мин).

Класс делится на 4 группы, которым предлагается создать алгоритм составления уравнения касательной к графику функции. Учащиеся пользуются только общим уравнением касательной. После обсуждения проговаривают алгоритм по пунктам, дополняют, исправляют. В результате демонстрируется .

6.Самостоятельная работа с самопроверкой по эталону.

Цель: каждый для себя должен сделать вывод о том, что он уже умеет (5-6 мин).

На этом этапе возвращаемся к задаче слайда 9 о составлении уравнения касательной, учащиеся решают самостоятельно с последующей самопроверкой. , а также чертеж 2 «Живой математики».

7.Включение нового знания в систему знаний и повторение.

Цель: выполняются упражнения, в которых новое знание используется вместе с изученным ранее (10-12 мин).

Работа с задачником: страница 91, самостоятельный выбор номера из №№ 29.12 – 29.16 (ответы есть в учебнике). Ученики имеют возможность выбрать задания по уровню сложности.

ДОМАШНИМ ЗАДАНИЕМ будут эти же номера 29.12 – 29.16, отработать составление уравнения касательной, используя алгоритм. Решить не менее 3 букв, не считая выполненных в классе.

8.Рефлексия деятельности (итог урока).

Цель: осознание учащимися своей учебной деятельности, самооценка результатов деятельности своей и всего класса (2-3 мин).

Вопросы:

Какую задачу ставили?

Удалось ли решить поставленную задачу?

Каким способом?

Какие получили результаты?

Где можно применить новые знания?

И, наконец, после «всяких умных вещей» немного юмора. На экране представлены графики зависимости уровня ваших знаний от времени, в интервале от начала урока до его завершения.

Пожалуйста, выберите тот график, который, на ваш взгляд, наиболее вам близок. Имеют ли они отношение к теме нашего урока? По этим графикам можно судить о скорости приращения ваших знаний в ходе урока. График 1 – мы достигли цели и решили задачи, поставленные в начале урока.

Спасибо за урок!

Литература

    Алгебра и начала математического анализа. 10-11 классы. В 2 ч. Ч.1,2. Учебник и задачник для учащихся общеобразовательных учреждений (базовый уровень)/ под ред. А. Г. Мордковича. - М.: Мнемозина, 2011.

    Живая математика: сборник методических материалов. – М.: ИНТ. 176 с.

    В. М. Чернявский Работа с программой «Живая математика».

    Различные Интернет-ресурсы для поиска детьми дополнительной информации по теме «Производная».

Уроки 70-71. Уравнение касательной к графику функции

09.07.2015 5132 0

Цель: получить уравнение касательной к графику функции.

I. Сообщение темы и цели уроков

II. Повторение и закрепление пройденного материала

1. Ответы на вопросы по домашнему заданию (разбор нерешенных задач).

2. Контроль усвоения материала (тест).

Вариант 1

1. Найдите производную функции у = 3х4 – 2 cos x .

Ответ:

в точке х = π.

Ответ:

3. Решите уравнение y ’(x ) = 0, если

Ответ:

Вариант 2

1. Найдите производную функции у = 5хб + 3 sin x .

Ответ:

2. Вычислите значение производной функции в точке х = π.

Ответ:

3. Решите уравнение y ’(х) = 0, если

Ответ:

III. Изучение нового материала

Наконец перейдем к заключительному этапу изучения производной и рассмотрим на оставшихся занятиях применение производной. На этом занятии обсудим касательную к графику функции.

Понятие касательной уже рассматривалось ранее. Было показано, что график дифференцируемой в точке а функции f (х) вблизи а практически не отличается от графика касательной, а значит, он близок к секущей, проходящей через точки (а; f (а)) и (а + Δх; f (а + Δх)). Любая из таких секущих проходит через точку М(а; f (а)). Чтобы написать уравнение касательной, надо задать ее угловой коэффициент. Угловой коэффициент секущей Δ f /Δ x при Δх → 0 стремится к числу f "(а), которое является угловым коэффициентом касательной. Поэтому говорят, что касательная есть предельное положение секущей при Δх → 0.

Теперь получим уравнение касательной к графику функции f (х). Так как касательная является прямой и ее угловой коэффициент f "(а), то можно записать ее уравнение у = f "(a ) · x + b . Найдем коэффициент b из условия, что касательная проходит через точку М(а; f (а)). Подставим координаты этой точки в уравнение касательной и получим: f (а) = f "(a ) · a + b , откуда b = f (а) - f "(а) · а. Теперь подставим найденное значение b в уравнение касательной и получим: или Это и есть уравнение касательной. Обсудим применение уравнения касательной.

Пример 1

Под каким углом синусоида пересекает ось абсцисс в начале координат?

Угол, под которым график данной функции пересекает ось абсцисс, равен углу наклона а касательной, проведенной к графику функции f (x ) в этой точке. Найдем производную: Учитывая геометрический смысл производной, имеем: и a = 60°.

Пример 2

Напишем уравнение касательной графику функции f (х) = -х2 + 4х в точке a = 1.

f "(х) и самой функции f (x ) в точке a = 1 и получим: f "(a ) = f "(1) = -2 · 1 + 4 = 2 и f (a ) = f (1) = -12 + 4 · 1 = 3. Подставим эти величины в уравнение касательной. Имеем: у = 2(х - 1) + 3 или у = 2х + 1.

Для наглядности на рисунке приведены график функции f (x ) и касательная к этой функции. Касание происходит в точке M (1; 3).

На основе примеров 1 и 2 можно сформулировать алгоритм получения уравнения касательной к графику функции у = f (x ):

1) обозначить абсциссу точки касания буквой а;

2) вычислить f (а);

3) найти f "(x ) и вычислить f "(a );

4) подставить найденные числа a , f (a ), f "(a ) в формулу y = f ’(a )(x - a ) + f (a ).

Заметим, что изначально точка а может быть неизвестна и ее приходится искать из условий задачи. Тогда в алгоритме в п. 2 и 3 слово «вычислить» надо заменить словом «записать» (что иллюстрирует пример 3).

В примере 2 абсцисса а точки касания была задана напрямую. Во многих случаях точка касания определяется различными дополнительными условиями.

Пример 3

Напишем уравнения касательных, проведенных из точки A (0; 4) к графику функции f (x ) = - x 2 + 2х.

Легко проверить, что точка А не лежит на параболе. Вместе с тем неизвестны точки касания параболы и касательных, поэтому для нахождения этих точек будет использовано дополнительное условие - прохождение касательных через точку А.

Предположим, что касание происходит в точке а. Найдем производную функции: Вычислим значения производной f "(x ) и самой функции f (х) в точке касания а и получим: f ’(а) = -2а + 2 и f (a ) = -а2 + 2а. Подставим эти величины в уравнение касательной. Имеем: или Это уравнение касательной.

Запишем условие прохождения касательной через точку А, подставив координаты этой точки. Получим: 4 или 4 = а2, откуда а = ±2. Таким образом, касание происходит в двух точках В(-2; -8) и С(2; 0). Поэтому таких касательных будет две. Найдем их уравнения. Подставим значения а = ±2 в уравнение касательной. Получим: при a = 2 или ух = -2х + 4; при a = -2 или у2 = 6х + 4. Итак, уравнения касательных у1 = -2х + 4 и у2 = 6х + 4.

Пример 4

Найдем угол между касательными, используя условия предыдущей задачи.

Проведенные касательные у1 = -2х + 4 и у2 = 6х + 4 составляют с положительным направлением оси абсцисс углы а1 и а2 (причем tg a 1 = -2 и tg a 2 = 6) и между собой угол φ = a 1 - а2. Найдем, используя известную формулу, откуда φ = arctg 8/11.

Пример 5

Напишем уравнение касательной к графику функции параллельной прямой у = -х + 2.

Две прямые параллельны друг другу, если они имеют равные угловые коэффициенты. Угловой коэффициент прямой у = -х + 2 равен -1, угловой коэффициент искомой касательной равен f ’(a ), где a - абсцисса точки касания. Поэтому для определения а имеем дополнительное условие f ’(a ) = -1.

Используя формулу для производной частного функций, найдем производную: Найдем значение производной в точке a и получим:

Получим уравнение или (а - 2)2 = 4, или а - 2 = ±2, откуда а = 4 и а = 0. Таким образом, существуют две касательные, удовлетворяющие условию задачи. Подставим значения а = 4 и а = 0 в уравнение касательной у = f ’(a )(x - а) + f (а). При а = 4 имеем: и касательная у1 = -(х - 4) + 3 или у1 = -х + 7. При а = 0 получим: и касательная у2 = -(х - 0) – 1 или у2 = -х - 1. Итак, уравнения касательных у1 = -х + 7 и у2 = -х - 1.

Заметим, что если f "(a ) не существует, то касательная или не существует (как у функции f (х) = |х| в точке (0; 0) - рис. а, или вертикальна (как у функции в точке (0; 0) - рис. б.


Итак, существование производной функции f (х) в точке а эквивалентно существованию невертикальной касательной в точке (а; f (а)) графика. При этом угловой коэффициент касательной равен f "(а). В этом заключается геометрический смысл производной.

Понятие производной позволяет проводить приближенные вычисления. Уже неоднократно отмечалось, что при Δх → 0 значения функции f (x ) и касательной к ней у(х) практически совпадают. Поэтому при Δх 0 поведение функции f (х) в окрестности точки х0 приближенно можно описать формулой (фактически уравнение касательной). Эта формула с успехом используется для приближенных вычислений.

Пример 6

Вычислим значение функции в точке х = 2,03.

Найдем производную данной функции: f "(х) = 12х2 - 4х + 3. Будем считать, что х = а + Δх, где а = 2 и Δх = 0,03. Вычислим значения функции и ее производной в точке а и получим: и Теперь определим значение функции в заданной точке х = 2,03. Имеем:

Разумеется, приведенную формулу удобно использовать, если значения f (а) и f "(a ) легко вычислить.

Пример 7

Вычислим

Рассмотрим функцию Найдем производную: Будем считать, что х = а + Δх, где а = 8 и Δх = 0,03. Вычислим значения функции и ее производной в точке а и получим: Теперь определим значение функции в заданной точке х = 8,03. Имеем:

Пример 8

Обобщим полученный результат. Рассмотрим степенную функцию f (х) = х n и будем считать, что х = а + Δх и Δх → 0. Найдем f "(х) = n х n -1 и вычислим значения функции и ее производной в точке а, получим: f (a ) = an и f ’(a ) = nan -1 . Теперь имеем формулу f (х) = а n + nan -1 Δх. Применим ее для вычисления числа 0,98-20. Будем считать, что a = 1, Δх = -0,02 и n = -20. Тогда получим:

Разумеется, приведенную формулу можно использовать и для любых других функций, в частности тригонометрических.

Пример 9

Вычислим tg 48°.

Рассмотрим функцию f (x ) = tg x и найдем производную: Будем считать, что х = a + Δ х, где a = 45° = π/4 и (еще раз обратим внимание на то, что в тригонометрии углы обычно измеряют в радианах). Найдем значения функции и ее производной в точке а и получим: Теперь вычислим (учтено, что π = 3,14).

IV. Контрольные вопросы

1. Уравнение касательной к графику функции.

2. Алгоритм выведения уравнения касательной.

3. Геометрический смысл производной.

4. Применение уравнения касательной для приближенных вычислений.

V. Задание на уроках

§ 29, № 1 (а); 2 (б); 5 (а, б); 6 (в, г); 9 (а); 10 (б); 12 (г); 14 (а); 17; 21 (а); 22 (а, в); 24 (а, б); 25 (а); 26.

VI. Задание на дом

§ 29, № 1 (б); 2 (в); 5 (в, г); 6 (а, б); 9 (б); 10 (а); 12 (б); 14 (б); 18; 21 (в); 22 (б, г); 24 (в, г); 25 (б); 27.

VII. Творческие задания

1. В каких точках х касательные к графикам функций параллельны?

Ответ: х = -1, х = 3.

2. При каких х касательные к графикам функций у = 3 cos 5 x - 7 и у = 5 cos 3 x + 4 параллельны?

Ответ:

3. Под какими углами пересекаются кривые у = х2 и

Ответ: π/2 и arctg 3/5.

4. Под какими углами пересекаются кривые у = cos x и у = sin х?

Ответ:

5. К параболе у = 4 - х2 в точке с абсциссой х = 1 проведена касательная. Найдите точку пересечения этой касательной с осью ординат.

Ответ: (0; 5).

6. К параболе у = 4х - х2 в точке с абсциссой х = 3 проведена касательная. Найдите точку пересечения этой касательной с осью абсцисс.

Ответ: (9/2; 0).

7. Найдите угол между двумя касательными, проведенными из точки (0; -2) к параболе у = х2.

Ответ:

8. К графику функции у = 3х2 + 3х + 2 проведены касательные с угловыми коэффициентами k 1 = 0 и k 2 = 15. Напишите уравнение прямой, проходящей через точки касания.

Ответ: у = 12х - 4.

9. Найдите уравнения прямых, касающихся одновременно парабол у = х2 + х - 2 и у = -х2 + 7х - 11.

Ответ: у = 7х - 11 и у = х - 2.

10. Напишите уравнение общей касательной к параболам у = -3х2 + 4х + 4 и у = -3х2 + 16х - 20.

Ответ: у = -2х + 7.

11. Касательная к графику функции у = х2 - 4х - 3 проведена в точке х = 0. Найдите площадь треугольника, образованного касательной и осями координат.

Ответ: 9/8.

12. Найдите площадь треугольника, ограниченного осями координат и касательной к графику функции в точке х = 2.

Ответ: 1.

VIII. Подведение итогов уроков

Слайд 2

Верно ли определение?

Касательная – это прямая, имеющая с данной кривой одну общую точку.

Слайд 3

Пусть дана и две прямые и, имеющая с данной параболой одну общую точку М (1;1).

Слайд 4

На данном уроке:

выясним, что же такое касательная к графику функции в точке, как составить уравнение касательной; рассмотрим основные задачи на составление уравнения касательной. Для этого: вспомним общий вид уравнения прямой условия параллельности прямых определение производной правила дифференцирования Формулы дифференцирования

Слайд 5

Определение производной

Пусть функция определена в некотором интервале, содержащем внутри себя точку. Дадим аргументу приращение такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции и составим отношение.Если существует предел отношения при, то указанный предел называют производной функции в точке и обозначают.

Слайд 6

Правила дифференцирования

Производная суммы равна сумме производных. Постоянный множитель можно вынести за знак производной. Производная произведения двух функций равна сумме двух слагаемых; первое слагаемое есть произведение производной первой функции на вторую функцию, а второе слагаемое есть произведение первой функции на производную второй функции. Производная частного

Слайд 7

Основные формулы дифференцирования

  • Слайд 8

    Две прямые параллельны тогда и только тогда, когда их угловые коэффициенты равны

    Параллельны ли прямые:

    Слайд 9

    Пусть дан график функции y=f(x). На нем выбрана точка M(a;f(a)), в этой точке к графику функции проведена касательная (мы предполагаем, что она существует). Найти угловой коэффициент касательной.

    Слайд 10

    Геометрический смысл производной

    Если к графику функции y = f (x)в точке можно провести касательную, непараллельную оси у, то выражает угловой коэффициент касательной

    Слайд 11

    Производная в точке равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке. Т.е. Причем, если: .

    Слайд 12

    Вывод уравнения касательной

    Пусть прямая задана уравнением: уравнение касательной к графику функции

    Слайд 13

    Составить уравнение касательной:

    к графику функции в точке

    Слайд 14

    к графику функции в точке

    Слайд 15

    Алгоритм нахождения уравнения касательной к графику функции y=f(x).

    Обозначим абсциссу точки касания буквой x=a. Вычислим. Найдем и. Подставим найденные числа a , в формулу

    Слайд 16

    Составить уравнение касательной к графику функции в точке.

    Слайд 17

    К графику функции провести касательную так, чтобы она была параллельна прямой.

    Слайд 18

    Слайд 19

    Самостоятельная работа

  • Слайд 20

    Номера из учебника

    № 29.3 (а,в) № 29.12 (б,г) № 29.18 № 29.23 (а)

    Слайд 21

    Ответьте на вопросы:

    Что называется касательной к графику функции в точке? В чем заключается геометрический смысл производной? Сформулируйте алгоритм нахождения уравнения касательной?

    Слайд 22

    Домашняя работа

    № 29.3 (б,г) № 29.12 (а,в) № 29.19 № 29.23 (б)

    Слайд 23

    Литература

    Алгебра и начала математического анализа: Учеб. Для 10-11 кл. для учащихся общеобразовательных учреждений (базовый уровень) / Под редакцией А.Г. Мордковича. – М.: Мнемозина, 2009. Алгебра и начала математического анализа: Задачник, Для 10-11 кл. для учащихся общеобразовательных учреждений (базовый уровень) / Под редакцией А.Г. Мордковича. – М.: Мнемозина, 2009. Алгебра и начала анализа. Самостоятельные и контрольные работы для 10-11 классов. / Ершова А.П., Голобородько В.В. – М.: ИЛЕКСА, 2010 ЕГЭ 2010. Математика. Задача В8. Рабочая тетрадь / Под редакцией А.Л.Семенова и И.В.Ященко – M.: Издательство МЦНМО, 2010

    Посмотреть все слайды